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ABSTRACT: A previously unexplained effect in the relative
rate of excited-state intramolecular proton transfer (ESIPT) in
related indole derivatives is investigated using both theory and
experiment. Ultrafast spectroscopy [J. Phys. Chem. A, 2015,
119, 5618−5625] found that although the diol 1,3-bis(2-
pyridylimino)-4,7-dihydroxyisoindole exhibits two equivalent
intramolecular hydrogen bonds, the ESIPT rate associated with
tautomerization of either hydrogen bond is a factor of 2 slower
than that of the single intramolecular hydrogen bond in the
ethoxy-ol 1,3-bis(2-pyridylimino)-4-ethoxy-7-hydroxyisoindole.
Excited-state electronic structure calculations suggest a resolution to this puzzle by revealing a seesaw effect in which the two
hydrogen bonds of the diol are both longer than the single hydrogen bond in the ethoxy-ol. Semiclassical rate theory recovers the
previously unexplained trends and leads to clear predictions regarding the relative H/D kinetic isotope effect (KIE) for ESIPT in
the two systems. The theoretical KIE predictions are tested using ultrafast spectroscopy, confirming the seesaw effect.

Photocatalytic reactions that couple the electronic and
nuclear dynamics are central to many modern chemical

challenges, including artificial photosynthesis, carbon dioxide
reduction, and nitrogen fixation. Excited-state intramolecular
proton transfer (ESIPT)1−3 is an important example of such
reactions that can be studied under controlled conditions using
the time-resolved Stokes shift associated with the change in the
electronic density during the reaction.
A new class of ESIPT dyes showing a large Stokes shift was

recently synthesized4 and studied both experimentally4,5 and
theoretically.6,7 This class of ESIPT dyes is particularly
interesting as it allows for facile and controllable keto−enol
interconversion, leading to potential uses as molecular probes.
The ESIPT associated with two particular members of this class
(see Figure 1) was studied using ultrafast pump−probe
experiments5 and found to exhibit unusual kinetics. Specifically,
the reaction rate for ESIPT in the diol 1,3-bis(2-pyridylimino)-
4,7-dihydroxyisoindole was about two times slower than in
ethoxy-ol 1,3-bis(2-pyridylimino)-4-ethoxy-7-hydroxyisoindole,
despite the fact that there are two protons available for transfer
compared to only one proton in ethoxy-ol. The mechanistic
basis for this difference was unexplained in previous work.5

In this study, we combine excited-state electronic structure
calculations, semiclassical transition-state rate theory, and
ultrafast pump−probe experiments to explore this effect.
First, optimized minimum and transition-state geometries for
the lowest singlet excited state are obtained using time-
dependent density functional theory (TD-DFT). Then, semi-
classical transition-state rate theory (SC-TST) is employed to

calculate proton transfer times and predict the relative kinetic
isotope effect (KIE) of both molecules. Lastly, the relative KIE
of the diol and the ethoxy-ol in acetonitrile is measured using
ultrafast pump−probe experiments and compared to the
theoretical predictions.
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Figure 1. Chemical structures for the diol (R = OH) and the ethoxy-ol
(R = OEt). The ESIPT reaction occurs along the indicated hydrogen
bond. Geometric parameters are presented in Table 2.
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We first demonstrate that intramolecular hydrogen bonds
create structural shifts on the lowest singlet excited-state
potential energy surface (PES) that favor rapid ESIPT in the
ethoxy-ol relative to the diol. Structures, energies, and harmonic
vibrational frequencies for the ESIPT reactant and transition
state for each molecule on the lowest singlet excited-state
surface are obtained using TD-DFT with a range of exchange-
correlation functionals and basis sets.8−14 The current analysis
assumes that only a single-proton transfer occurs in the diol, as
is consistent with previous studies.5−7 In particular, the
observed similarities for the Stokes shift in the diol and
ethoxy-ol suggest that only a single-proton transfer reaction
occurs in both systems; additional support for the assumption
includes the observation of single-exponential kinetics for
ESIPT in both the diol and the ethoxy-ol,5 as well as calculated
barrier heights that indicate the concerted double-proton
transfer in the diol to be kinetically unfavorable.6,7 The
harmonic frequencies were calculated for both the protonated
and deuterated versions of these molecules, to enable the KIE
calculations reported below. The effects of the acetonitrile
solvent are included using a polarizable continuum model
(PCM)15,16 (see section IIb in the Supporting Information for
full details). Excitation to the singlet excited-state considered in
this study is dominated by a HOMO-to-LUMO transition,
which exhibits a shift in electronic density from the OH group
to the acceptor N;5 additional analysis of the low-lying excited
states is provided in section IIb in the Supporting Information.
Figure 2 illustrates optimized geometries for the ESIPT

reactant for both molecules. As seen in Figure 2, the balance
of the two hydrogen bonds in the diol leads to a symmetric
structure. In the ethoxy-ol, however, one of the hydrogen bonds
is eliminated and the remaining hydrogen bond is thereby
shorter than in the diol. This is reminiscent of a seesaw (Figure
2), in which shortening of the hydrogen bond results in a
shorter proton transfer distance and a roughly 20% lower
ESIPT barrier height (see Table 1).
We next confirm that the seesaw effect observed in the

ESIPT distances is due to the competing attractions of the two

hydrogen bonds in the diol, rather than steric repulsions in the
ethoxy-ol. This is done by first considering an alternative
conformation of the ethoxy-ol, in which the R = OEt (i.e., R =
OCH2CH3) moiety is oriented in a gauche conformation with
respect to the iso-indole moiety (see Figure S10), rather than in
the anti conformation shown in Figure 2. If steric repulsions are
leading to the calculated structural changes in the ethoxy-ol,
then this gauche conformation should exhibit an even shorter
hydrogen bond. However, comparison of the excited-state
minimum geometries of both conformers show very similar
hydrogen bond lengths (see Table 2). This finding is

corroborated by analyzing a third molecule, for which R =
Me (i.e., R = CH3), and it is found that this molecule likewise
exhibits a hydrogen-bond length very similar to that of the
ethoxy-ol (see Table 2). These results indicate that the
geometrical changes shown in Figure 2 are due to the removal
of the balance of the two hydrogen bonds in the diol and not
due to steric effects in the ethoxy-ol. A similar seesaw effect is
found when comparing the ground-state minimum geometries
(see section IIf in the Supporting Information).
To investigate if the observed differences in geometry and

barrier height account for the experimentally observed
difference in ESIPT times, we now present semiclassical rate
calculations and experimental rates for the ESIPT in the diol
and the ethoxy-ol. For the theoretical work, a separable
semiclassical approach is employed and the thermal rate
constant k(T) is calculated using17
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vibrational partition function of the ith normal mode at the
transition state; and the normal modes are sorted such that the
reaction coordinate (i.e., OH stretching mode at the minimum,
unstable mode at the transition state) corresponds to i = 1. ΔV
is the potential energy difference between the reactants and the
transition state, and κ denotes a tunneling correction factor

Figure 2. Depiction of the molecular seesaw effect. Optimized
geometries for the ESIPT reactant for the diol (top panel) and the
ethoxy-ol (bottom panel) are shown from calculations at the B3LYP/
TZVP level of theory. ESIPT distances are shown in blue and given in
angstroms, and the C−C−C bond angles are shown in black. As
illustrated at right, removing one of the hydrogen bonds, as in the
ethoxy-ol, eliminates the competition of the two hydrogen bonds and
thus shortens the remaining hydrogen bond.

Table 1. Barrier Heights (in Kilocalories per Mole) for
ESIPT in the First Excited State of the Diol and the Ethoxy-
ol Obtained Using Different Functionals and Basis Sets

method diol ethoxy-ol

B3LYP/TZVP 5.4 4.3
B3LYP/6-31++G(d) 5.9 4.8
M062X/6-31++G(d) 5.9 4.7
CAM-B3LYP/6-31++G(d) 5.1 3.7

Table 2. Structural Parameters on the First Excited State, S1,
Related to the Seesaw Effect for the Diol, Ethoxy-ol, and
Methyl-ol Obtained Using B3LYP/TVZPa

R d a1 a2

OEt-anti 1.79 127° 135°
OEt-gauche 1.74 125° 137°
CH3 1.77 127° 134°
OH 1.96 130° 130°

aFor the definition of d, a1, and a2, see Fig. 1. Distances given in
angstroms.
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along a separable one-dimensional reaction coordinate (see also
section IIa in the Supporting Information):
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where ΔE is the zero-point energy corrected barrier height,
defined as ΔE = ΔV + EZP

‡ − EZP
r ; EZP

‡ and EZP
r are the harmonic

zero-point energies at the transition state and the reactant
minimum, respectively; ωI = ωvib,1

‡ is the frequency of the
unstable mode at the transition state. Because ESIPT is a first-
order process, the reaction transfer time is obtained as

τ =
k T
ln(2)

( )
. TD-DFT calculations are used to obtain the reaction

barriers and harmonic vibrational frequencies associated with
the excited-state PES (see section IIb in the Supporting
Information). Experimentally, the ESIPT transfer times are
measured using ultrafast pump−probe experiments in a setup
described previously5 with minor modifications detailed in
section I in the Supporting Information. An ultraviolet (UV)
pump−visible probe technique was used to measure the
femtosecond transient absorption of each compound in
acetonitrile. The appearance of a stimulated emission band
corresponding to the proton/deuteron transferred photo-
product was fit to a single exponential to extract the ESIPT
transfer time and the KIE.
Table 3 presents both the calculated and the measured

ESIPT transfer times in the diol and the ethoxy-ol. Comparison

of the current experimental work (performed in acetonitrile
solvent) with previous experimental work5 (in methanol)
reveals that the relative rate for ESIPT in the diol and ethoxy-ol
is relatively insensitive to solvent effects. The calculated transfer
times are obtained with parameters from TD-DFT calculations
employing different exchange-correlation functionals and basis
sets. For all functionals and basis sets the calculated transfer
times in the ethoxy-ol are significantly shorter than in the diol,
which is consistent with the experimentally observed trend and
the observation that the ethoxy-ol exhibits a shorter proton
transfer distance (see Figure 2). However, the calculated values
of the ESIPT transfer time depends strongly on the functional
employed, which hinders the direct comparison to experiment.
Table 3 also shows that the relative value of the ESIPT transfer
times for the diol versus the ethoxy-ol is more robust across the
different functionals, yielding reasonable agreement with the
experimental value of 1.24 ± 0.24. The robustness of these

calculated relative transfer times is due to the fact that the
height of the ESIPT barrier predicted by a given functional for
the two molecules is strongly correlated (see Figure 3).

Next, the rate calculations are used to predict the relative H/
D KIE for the ESIPT reactions. Table 4 and Figure 4 present

Table 3. Calculated and Measured Proton Transfer Times, τ
(in Femtoseconds), of the Diol and the Ethoxy-ol, as Well as
the Respective Relative Values

methoda molecule τ relative

B3LYP/TZVP diol 2358 1.55
B3LYP/TZVP ethoxy-ol 1520
B3LYP diol 3130 1.44
B3LYP ethoxy-ol 2177
M062X diol 3884 1.41
M062X ethoxy-ol 2755
CAM-B3LYP diol 1259 1.68
CAM-B3LYP ethoxy-ol 749
experiment diol 319 ± 50 1.24 ± 0.24
experiment ethoxy-ol 257 ± 30

aIf not specified, the basis set used is 6-31++G(d).

Figure 3. Correlation of barrier heights (in kilocalories per mole) in
the diol and the ethoxy-ol when employing different exchange-
correlation functionals and basis sets.

Table 4. Calculated and Measured KIE of the Diol and the
Ethoxy-ol, as Well as the Respective Relative Values

methoda molecule KIE relative

B3LYP/TZVP diol 7.67 1.42
B3LYP/TZVP ethoxy-ol 5.42
B3LYP diol 8.74 1.39
B3LYP ethoxy-ol 6.28
M062X diol 9.05 1.41
M062X ethoxy-ol 6.41
CAM-B3LYP diol 6.88 1.55
CAM-B3LYP ethoxy-ol 4.44
experiment diol 1.83 ± 0.30 2.01 ± 0.42
experiment ethoxy-ol 0.91 ± 0.12

aIf not specified, the basis set used is 6-31++G(d).

Figure 4. Absolute and relative (i.e., diol/ethoxy-ol) KIEs obtained at
various levels of theory as a function of the ESIPT barrier height for
the ethoxy-ol. The experimentally measured relative KIE is 2.01 ±
0.42, and the range of values for the calculated relative KIE is 1.39−
1.55.
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the calculated KIEs, obtained at various levels of theory. Also
reported are the calculated relative (diol/ethoxy-ol) KIE values,
which are typically greater than one, due to the higher barrier
for ESIPT in the diol. As for the calculated transfer times, the
absolute values for the KIE calculations are more sensitive to
the level of theory than the relative KIE values (which vary by
less than 10% across levels of theory). Thus, the relative KIE
values are best suited for comparison with experiment.
Table 4 also reports experimentally measured KIE for the

two ESIPT reactions. Although the absolute values of the
measured KIEs are smaller than the calculated values (which is
consistent with the fact that the calculated transfer times for
these reactions are typically larger than the corresponding
experimental values in Table 3), the calculated relative KIE
values in the range of 1.39−1.55 are in reasonably good
agreement with the experimentally observed value of 2.01 ±
0.42.
In summary, the counterintuitive experimental observation5

of faster ESIPT in the ethoxy-ol than in the diol is ascribed to a
seesaw effect (Figure 2) in which a reduction in the number of
intramolecular hydrogen-bond interfaces leads to a reduction in
the ESIPT transfer distance. Using SC-TST calculations with
parameters from TD-DFT calculations, it is predicted that this
seesaw effect will lead to a larger KIE for the diol than the
ethoxy-ol, which is experimentally confirmed using ultrafast
spectroscopy. We note that although good agreement is found
for the relative transfer times and relative KIE between the two
molecules (Tables 3 and 4), the absolute KIEs (Table 4) and
transfer times (Table 3) exhibit differences among the levels of
theory and between theory and experiment. These issues are
due to the approximations associated with the exchange-
correlation functionals (Figures 3 and 4), possibly in addition
to approximations associated with the use of a TST description
for a reaction with a relatively low barrier (see section IId in the
Supporting Information). Quantum dynamics methods, e.g.,
the ring-polymer molecular dynamics approach,18,19 can be
used to investigate possible nonequilibrium effects related to
sudden photoexcitation,20−22 which will be the focus of future
work. The similarity of the relative ESIPT transfer times for
diol and ethoxy-ol in acetonitrile versus that in methanol5

suggests that the seesaw effect is relatively robust to the solvent
environment, including some protic solvents; nonetheless, we
recognize that solvent environments that disrupt the intra-
molecular hydrogen bonds of the diol and ethoxy-ol would
likewise be expected to disrupt the seesaw effect. Finally,
although the reported agreement between theory and experi-
ment for the kinetic isotope effects provides additional
validation of the assumption of a kinetically limiting single-
proton transfer in the diol,5−7 the dynamics of double-proton
transfer in the diol may be of interest for future work.
It is possible that the seesaw effect presented in this work

may be exploited in catalyst design with the aim of modulating
hydrogen bonding. It is known that minute perturbations in
hydrogen bonding can alter the function of redox catalysts that
require proton transfer.23−26 It may be worthwhile to explore
design themes in which the strength of hydrogen bonding in
the core of a catalyst is finely modulated (and perhaps
photochemically actuated) by a counterbalanced hydrogen
bond located farther away. To realize such goals, it is necessary
to study this effect further. For example, if the fulcrum of the
seesaw is composed of a single C−C bond and hydrogen bonds
are placed along the body of the seesaw at variable distances, a

potential extension of the mechanical “law of the lever” to
molecular scales may be achievable.
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